FORM TP 2019173

MAY/JUNE 2019

CARIBBEAN EXAMINATIONS COUNCIL

CARIBBEAN ADVANCED PROFICIENCY EXAMINATION®

CHEMISTRY

UNIT 1 - Paper 02

2 hours 30 minutes

READ THE FOLLOWING INSTRUCTIONS CAREFULLY.

- This paper consists of THREE questions. Answer ALL questions.
- 2. Write your answers in the spaces provided in this booklet.
- 3. Do NOT write in the margins.
- 4. Where appropriate, ALL WORKING MUST BE SHOWN in this booklet.
- 5. A data booklet is provided.
- 6. You may use a silent, non-programmable calculator to answer questions.
- 7. If you need to rewrite any answer and there is not enough space to do so on the original page, you must use the extra lined page(s) provided at the back of this booklet. Remember to draw a line through your original answer.
- 8. If you use the extra page(s) you MUST write the question number clearly in the box provided at the top of the extra page(s) and, where relevant, include the question part beside the answer.

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.

Copyright © 2018 Caribbean Examinations Council All rights reserved.

02112124 MO CAPE 2514

Answer ALL questions.

MODULE 1: FUNDAMENTALS OF CHEMISTRY

1. Figure 1 shows the wavelengths of the most prominent lines in the visible region of the atomic hydrogen spectrum.

Figure 1. Wavelengths of the most prominent lines in the visible region of the atomic hydrogen spectrum

Explain how the atomic emission spectrum of hydrogen is produced.) (i)	(a)
[3 marks]		
Identify the series of lines in Figure 1.	(ii)	
[1 mark]		

GO ON TO THE NEXT PAGE

02112020 MJ CAPE 2019

iii) Assess how the levels in hydrog	series of lines in Figure 1 pro en.	vides evidence for discrete energ
	·····	

••••••	· · · · · · · · · · · · · · · · · · ·	
••••••		[4 mark
with the origin of t	the lines in the visible region of	- 7 - 6 - 5
		- 3
		- 2
		_ n = 1
		Energy level

Figure 2. Electron transitions associated with visible region in the hydrogen spectrum

[4 marks]

GO ON TO THE NEXT PAGE

02112020 MJ CAPE 2019

- (b) Hydrogen combines with oxygen to form the compound water. H₂O, and is also present in the hydronium ion, H₃O⁺.
 (i) Write the electronic configuration of oxygen in its ground state using s, p notation.
 [1 mark]
 (ii) Draw the shapes of the s and p orbitals:
 - Draw the shapes of the s and p orbitals:
 - s orbital

p orbital

[2 marks]

GO ON TO THE NEXT PAGE

(111)	Use the VSEPR theory to deduce the arrangement of the orbitals or bond angles around each of the following hydronium ion.	s and the shape
	• The oxygen atom in a molecule of water (H ₂ O)	
	• The hydronium ion (H ₃ O ⁻)	
		•••••••
		,
		[4 marks]
(iv)	Explain why the density of ice is lower than expected.	
		••••
		[3 marks]

(c) Nitrogen combines with hydrogen to form ammonia.

$$N_2(g) \ + \ 3 \ H_2(g) \quad \rightarrow \quad 2 \ NH_3(g) \quad \Delta H_g$$

Using the bond energies from Table 1, determine the enthalpy of reaction, ΔH_r .

TABLE 1: BOND ENERGY VALUE

Bond	Bond Energy kJ/mol
N-N	163
N≡N	945
H-H	÷3.6
N-H	390

[3 marks]

GO ON TO THE NEXT PAGE

- (d) Outline an experiment to determine the heat of solution of ammonium nitrate. In your response include
 - a labelled diagram of the apparatus
 - · data to be collected
 - how data to be collected can be used to determine the heat of solution.

[5 marks]

Total 30 marks

MODULE 2: KINETICS AND EQUILIBRIA

(a)	(i)	Using the Bronsted-Lowry theory, differentiate between a 'strong acid' and 'weak acid'.	l a
			••••
	(ii)	Carbonic acid forms a weak acidic solution in water.	is]
		Write an equation to represent the change when carbonic acid is dissolved in wat	er.
	(iii)	State TWO weak acids other than carbonic acid.	
(b)	(i)	Define EACH of the following terms:	
		рН	
		pK _a	
		[2 marks	 s]
		(iii)	'weak acid'. [2 mark] [3] [4] [5] [6] [6] [6] [7] [8] [8] [9] [9] [9] [10] [11] [12] [12] [13] [14] [15] [15] [16] [16] [16] [17] [18]

GO ON TO THE NEXT PAGE

DO NOT WRITE IN THIS AREA

Calculate the pH of a 0.100 mol dm⁻³ aqueous solution of carbonic acid K_s of carbonic acid = 4.5×10^{-7}) at the experimental temperature.

[2 marks]

(iii) Determine the pK_a of carbonic acid and compare its strength with an aqueous solution of hydrogen sulfide. (K_a of hydrogen sulfide = 8.9×10^{-8})

[3 marks]

GO ON TO THE NEXT PAGE

02112020/MJ/CAPE 2019.

[3 marks]

(iv)	Sketch a	labelled	graph	to show	v the	pН	changes	which	occur	during	the	titration	of
	$25 \text{ cm}^3 \text{ of}$	f 0.10 mc	ol dm ⁻³	carbonic	acid	wit	h 0.10 m	ol dm ⁻³	of sod	ium hve	łroxi	de soluti	On.

(c)	There	e are several buffers in the blood which have a pH range of 7.35 -	7,45.
	(i)	Define the term 'buffer solution'.	

			[1 mark]
	(ii)	State the components of TWO buffer systems in the blood.	
			[2 marks]

GO ON TO THE NEXT PAGE

	(iii)	Explain, using an equation, how ONE of the buffer systems in (c) (ii) operates to maintain the pH of blood when acid is added.
		[2 marks]
(d)	Calciu liner.	m hydroxide preparations are used in restorative dentistry as a therapeutic oral cavity
	(i)	Write the expression for the solubility product of calcium hydroxide.
		[1 mark]
	(ii)	Calculate the solubility of calcium hydroxide in g dm ⁻³ . $(K_{sp} Ca(OH)_2 = 5.5 \times 10^{-6} \text{ mol}^3 \text{ dm}^{-9})$

[3 marks]

GO ON TO THE NEXT PAGE

02112020 NIJ CAPE 2019

ш)	Outline the experimental steps required to determine the solubility product of calcium hydroxide.
	[5 marks]

Total 30 marks

MODULE 3: CHEMISTRY OF THE ELEMENTS

3. Figure 3 shows the first ionization energies of the Period 3 elements, sodium to argon.

Figure 3. First ionization energies of the Period 3 elements

(1)	magnesium.
	[2 marks]
(ii)	Explain why there is a general increase in the first ionization energies across the period from sodium to argon.
	[2 marks]

GO ON TO THE NEXT PAGE

	(111)	Explain why the first ionization energy of magnesium is greater than that of aluminium.
		[2 marks]
(b)	evider	xides of the Period 3 elements exhibit variation in their acid-base character as aced by their reactions with water. Write a balanced equation to show the reaction en water and EACH of the following Period 3 oxides.
	•	Na_2O
	•	SO ₃
		[4 marks]
(c)	(i)	Describe an experimental method with expected results to determine the acid-base nature of the following three Period 3 chlorides.
		 NaCl MgCl₂ SiCl₄
		,
		[5 marks]
		GO ON TO THE NEXT PAGE

(ii)	Write a balanced equation to show the reaction between water and EACH of the following Period 3 chlorides.
	• MgCl ₂
	• SiCl ₄
	[4 marks]
(i) (b)	Define the term 'transition element'.
	[1 mark]
(ii)	List THREE characteristic properties of transition elements other than forming coloured compounds.
	[3 marks]
(iii)	A sequence of reactions involving compounds of cobalt, with ions A, B and C is shown below.
	A B C $H_2O \qquad NH_3$ $[Co(OH)_4]^{2^{-}}(aq) \rightleftharpoons [Co(H_2O)_6]^{2^{-}}(aq) \rightleftharpoons [Co(NH_3)_6]^{2^{+}}(aq)$ Blue
	State the colour of the following ions:
	В
	C[2 marks]

(iv)

The electronic configurations of Zn- and Cu- are given below
 Zn² - [Ar] 3d¹⁰ Cu² - [Ar] 3d⁹
Account for the fact that unlike Cu ²⁺ compounds. Zn ²⁺ compounds are normally colourless.
[5 marks]

END OF TEST

IF YOU FINISH BEFORE TIME IS CALLED, CHECK YOUR WORK ON THIS TEST.

